Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 64
1.
Animals (Basel) ; 14(4)2024 Feb 14.
Article En | MEDLINE | ID: mdl-38396581

Gastrointestinal nematodes (GINs) are a major problem affecting sheep production systems worldwide. The flocks infected with GINs can undergo significant economic losses due to a decrease in productivity, the animals' deaths, and the costs associated with treatments. The over-reliance on anthelmintics in the past years to eliminate GINs has resulted in the development of resistance against the available commercial anthelmintics. Genetically resistant animals can be used in mating systems to improve the overall flock resistance. This review aimed to summarize the estimated genetic parameters for resistance traits and genetic gains through the use of genetic/genomic selection for resistance to GINs in sheep. Heritability estimates from the literature ranged from 0.00 to 0.46 for fecal egg counts, 0.12 to 0.37 for packed cell volume/hematocrit, 0.07 to 0.26 for FAffa MAlan CHArt (FAMACHA©), from 0.10 to 0.37 for blood parameters, and 0.19 for Immunoglobulin A. Genetic correlations between traits measuring resistance to GINs and production traits ranged from negative to positive values in the literature. Genetic gains are possible when genetic/genomic selection for GIN resistance is applied. Therefore, genetic/genomic selection can be used to improve flocks' resistance to GINs as a sustainable approach in sheep production systems.

2.
Genes (Basel) ; 15(2)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38397178

Gastrointestinal nematodes (GINs) can be a major constraint and global challenge to the sheep industry. These nematodes infect the small intestine and abomasum of grazing sheep, causing symptoms such as weight loss, diarrhea, hypoproteinemia, and anemia, which can lead to death. The use of anthelmintics to treat infected animals has led to GIN resistance, and excessive use of these drugs has resulted in residue traced in food and the environment. Resistance to GINs can be measured using multiple traits, including fecal egg count (FEC), Faffa Malan Chart scores, hematocrit, packed cell volume, eosinophilia, immunoglobulin (Ig), and dagginess scores. Genetic variation among animals exists, and understanding these differences can help identify genomic regions associated with resistance to GINs in sheep. Genes playing important roles in the immune system were identified in several studies in this review, such as the CFI and MUC15 genes. Results from several studies showed overlapping quantitative trait loci (QTLs) associated with multiple traits measuring resistance to GINs, mainly FEC. The discovery of genomic regions, positional candidate genes, and QTLs associated with resistance to GINs can help increase and accelerate genetic gains in sheep breeding programs and reveal the genetic basis and biological mechanisms underlying this trait.


Nematoda , Nematode Infections , Parasites , Animals , Sheep/genetics , Nematode Infections/genetics , Nematode Infections/veterinary , Nematoda/genetics , Quantitative Trait Loci , Genomics
3.
Commun Biol ; 7(1): 98, 2024 01 15.
Article En | MEDLINE | ID: mdl-38225372

Despite regulatory elements such as long non - coding RNAs representing most of the transcriptome, the functional understanding of long non - coding RNAs in relation to major health conditions including bovine mastitis is limited. This study examined the milk somatic cell transcriptome from udder quarters of 6 Holstein dairy cows to identify differentially expressed long non - coding RNAs using RNA - Sequencing. Ninety - four differentially expressed long non - coding RNAs are identified, 5 of which are previously annotated for gene name and length, 11 are annotated for gene name and 78 are novel, having no gene name or length previously annotated. Significant inflammatory response and regulation of immune response pathways (false discovery rate < 0.05) are associated with the differentially expressed long non - coding RNAs. QTL annotation analysis revealed 31 QTL previously annotated in the genomic regions of the 94 differentially expressed long non - coding RNAs, and the majority are associated with milk traits. This research provides a better understanding of long non - coding RNAs regulatory elements in milk somatic cells, which may enhance current breeding strategies for more adaptable or high mastitis resistant cattle.


Mastitis , RNA, Long Noncoding , Female , Cattle , Animals , Humans , Milk , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Count , Phenotype , Mastitis/metabolism
4.
PLoS One ; 18(8): e0289066, 2023.
Article En | MEDLINE | ID: mdl-37556504

The phenomenon in which the expected Mendelian inheritance is altered is known as transmission ratio distortion (TRD). The TRD analysis relies on the study of the transmission of one of the two alleles from a heterozygous parent to the offspring. These distortions are due to biological mechanisms affecting gametogenesis, embryo development and/or postnatal viability, among others. In this study, TRD phenomenon was characterized in horses using SNP-by-SNP model by TRDscan v.2.0 software. A total of 1,041 Pura Raza Español breed horses were genotyped with 554,634 SNPs. Among them, 277 horses genotyped in trios (stallion-mare-offspring) were used to perform the TRD analysis. Our results revealed 140 and 42 SNPs with allelic and genotypic patterns, respectively. Among them, 63 displayed stallion-TRD and 41 exhibited mare-TRD, while 36 SNPs showed overall TRD. In addition, 42 SNPs exhibited heterosis pattern. Functional analyses revealed that the annotated genes located within the TRD regions identified were associated with biological processes and molecular functions related to spermatogenesis, oocyte division, embryonic development, and hormonal activity. A total of 10 functional candidate genes related to fertility were found. To our knowledge, this is the most extensive study performed to evaluate the presence of alleles and functional candidate genes with transmission ratio distortion affecting reproductive performance in the domestic horse.


Genomics , Inheritance Patterns , Horses/genetics , Animals , Male , Female , Alleles , Genotype , Heterozygote
5.
BMC Genomics ; 24(1): 383, 2023 Jul 08.
Article En | MEDLINE | ID: mdl-37422635

BACKGROUND: Biological mechanisms affecting gametogenesis, embryo development and postnatal viability have the potential to alter Mendelian inheritance expectations resulting in observable transmission ratio distortion (TRD). Although the discovery of TRD cases have been around for a long time, the current widespread and growing use of DNA technologies in the livestock industry provides a valuable resource of large genomic data with parent-offspring genotyped trios, enabling the implementation of TRD approach. In this research, the objective is to investigate TRD using SNP-by-SNP and sliding windows approaches on 441,802 genotyped Holstein cattle and 132,991 (or 47,910 phased) autosomal SNPs. RESULTS: The TRD was characterized using allelic and genotypic parameterizations. Across the whole genome a total of 604 chromosomal regions showed strong significant TRD. Most (85%) of the regions presented an allelic TRD pattern with an under-representation (reduced viability) of carrier (heterozygous) offspring or with the complete or quasi-complete absence (lethality) for homozygous individuals. On the other hand, the remaining regions with genotypic TRD patterns exhibited the classical recessive inheritance or either an excess or deficiency of heterozygote offspring. Among them, the number of most relevant novel regions with strong allelic and recessive TRD patterns were 10 and 5, respectively. In addition, functional analyses revealed candidate genes regulating key biological processes associated with embryonic development and survival, DNA repair and meiotic processes, among others, providing additional biological evidence of TRD findings. CONCLUSIONS: Our results revealed the importance of implementing different TRD parameterizations to capture all types of distortions and to determine the corresponding inheritance pattern. Novel candidate genomic regions containing lethal alleles and genes with functional and biological consequences on fertility and pre- and post-natal viability were also identified, providing opportunities for improving breeding success in cattle.


Embryonic Development , Inheritance Patterns , Animals , Cattle/genetics , Genotype , Heterozygote , Alleles
6.
Genomics ; 115(5): 110664, 2023 09.
Article En | MEDLINE | ID: mdl-37286013

This study aims to characterize the functional changes of the rumen epithelium associated with ruminal short-chain fatty acid (SCFA) concentration and epithelium-attached microbes during the weaning transition in dairy calves. Ruminal SCFA concentrations were determined, and transcriptome and microbiota profiling in biopsied rumen papillae were obtained from Holstein calves before and after weaning using RNA- and amplicon sequencing. Metabolic pathway analysis showed that pathways related to SCFA metabolism and cell apoptosis were up- and down-regulated postweaning, respectively. Functional analysis showed that genes related to SCFA absorption, metabolism, and protective roles against oxidative stress were positively correlated with ruminal SCFA concentrations. The relative abundance of epithelium-attached Rikenellaceae RC9 gut group and Campylobacter was positively correlated with genes involved in SCFA absorption and metabolism, suggesting that these microbes can cooperatively affect host functions. Future research should examine the contribution of attenuated apoptosis on rumen epithelial functional shifts during the weaning transition.


Microbiota , Rumen , Animals , Cattle , Rumen/metabolism , Weaning , Epithelium/metabolism , Fatty Acids, Volatile/metabolism , Gene Expression Profiling
7.
Front Genet ; 14: 1132796, 2023.
Article En | MEDLINE | ID: mdl-37091801

Several biological mechanisms affecting the sperm and ova fertility and viability at developmental stages of the reproductive cycle resulted in observable transmission ratio distortion (i.e., deviation from Mendelian expectations). Gene-by-gene interactions (or epistasis) could also potentially cause specific transmission ratio distortion patterns at different loci as unfavorable allelic combinations are under-represented, exhibiting deviation from Mendelian proportions. Here, we aimed to detect pairs of loci with epistatic transmission ratio distortion using 283,817 parent-offspring genotyped trios (sire-dam-offspring) of Holstein cattle. Allelic and genotypic parameterization for epistatic transmission ratio distortion were developed and implemented to scan the whole genome. Different epistatic transmission ratio distortion patterns were observed. Using genotypic models, 7, 19 and 6 pairs of genomic regions were found with decisive evidence with additive-by-additive, additive-by-dominance/dominance-by-additive and dominance-by-dominance effects, respectively. Using the allelic transmission ratio distortion model, more insight was gained in understanding the penetrance of single-locus distortions, revealing 17 pairs of SNPs. Scanning for the depletion of individuals carrying pairs of homozygous genotypes for unlinked loci, revealed 56 pairs of SNPs with recessive epistatic transmission ratio distortion patterns. The maximum number of expected homozygous offspring, with none of them observed, was 23. Finally, in this study, we identified candidate genomic regions harboring epistatic interactions with potential biological implications in economically important traits, such as reproduction.

8.
Animals (Basel) ; 13(7)2023 Mar 29.
Article En | MEDLINE | ID: mdl-37048455

Feeding linseed to dairy cows results in milk fat depression (MFD), but there is a wide range of sensitivity among cows. The objectives of this study were to identify target genes containing SNP that may play a key role in the regulation of milk fat synthesis in cows resistant or sensitive to MFD. Four cows were selected from a dairy farm after a switch from a control diet to a linseed-rich diet; two were resistant to MFD with a high milk fat content in the control (4.06%) and linseed-rich (3.90%) diets; and two were sensitive to MFD with the milk fat content decreasing after the change from the control (3.87%) to linseed-rich (2.52%) diets. Transcriptome and SNP discovery analyses were performed using RNA-sequencing technology. There was a large number of differentially expressed genes in the control (n = 1316) and linseed-rich (n = 1888) diets. Of these, 15 genes were detected as key gene regulators and harboring SNP in the linseed-rich diet. The selected genes MTOR, PDPK1, EREG, NOTCH1, ZNF217 and TGFB3 may form a network with a principal axis PI3K/Akt/MTOR/SREBP1 involved in milk fat synthesis and in the response to diets that induced MFD. These 15 genes are novel candidate genes to be involved in the resistance or sensitivity of dairy cows to milk fat depression.

9.
Front Genet ; 14: 1111426, 2023.
Article En | MEDLINE | ID: mdl-36873933

Gastrointestinal nematode (GIN) infections are considered the most important disease of grazing sheep and due to increasing anthelmintic resistance, chemical control alone is inadequate. Resistance to Gastrointestinal nematode infection is a heritable trait, and through natural selection many sheep breeds have higher resistance. Studying the transcriptome from GIN-exposed and GIN-unexposed sheep using RNA-Sequencing technology can provide measurements of transcript levels associated with the host response to Gastrointestinal nematode infection, and these transcripts may harbor genetic markers that can be used in selective breeding programs to enhance disease resistance. The objective of this study was to compare liver transcriptomes of sheep naturally exposed to Gastrointestinal nematode s, with either high or low parasite burdens, to GIN-unexposed control sheep in order to identify key regulator genes and biological processes associated with Gastrointestinal nematode infection. Differential gene expression analysis revealed no significant differentially expressed genes (DEG) between sheep with a high or low parasite burden (p-value ≤0.01; False Discovery Rate (FDR) ≤ 0.05; and Fold-Change (FC) of > ±2). However, when compared to the control group, low parasite burden sheep showed 146 differentially expressed genes (64 upregulated and 82 downregulated in the low parasite burden group relative to the control), and high parasite burden sheep showed 159 differentially expressed genes (57 upregulated and 102 downregulated in the low parasite burden group relative to the control) (p-value ≤0.01; FDR ≤0.05; and FC of > ±2). Among these two lists of significant differentially expressed genes, 86 differentially expressed genes (34 upregulated, 52 downregulated in the parasited group relative to the control) were found in common between the two parasite burden groups compared to the control (GIN-unexposed sheep). Functional analysis of these significant 86 differentially expressed genes found upregulated genes involved in immune response and downregulated genes involved in lipid metabolism. Results of this study offer insight into the liver transcriptome during natural Gastrointestinal nematode exposure that helps provide a better understanding of the key regulator genes involved in Gastrointestinal nematode infection in sheep.

10.
Animals (Basel) ; 13(3)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36766397

Animals respond to stress by activating a wide array of physiological and behavioral responses that are collectively referred to as the stress response. MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in the regulation of homeostasis. There are many reports demonstrating examples of stress-induced miRNA expression profiles. The aim of this study was to determine the circulatory miRNA profile of variable stress-responding lambs (n = 112) categorized based on their cortisol levels as high (HSR, 336.2 ± 27.9 nmol/L), middle (MSR, 147.3 ±9.5 nmol/L), and low (LSR, 32.1 ± 10.4 nmol/L) stress responders post-LPS challenge (400 ng/kg iv). Blood was collected from the jugular vein at 0 (T0) and 4 h (T4) post-LPS challenge, and miRNAs were isolated from four animals from each group. An array of 84 miRNAs and 6 individual miRNAs were evaluated using qPCR. Among 90 miRNAs, there were 48 differentially expressed (DE) miRNAs (log fold change (FC) > 2 < log FC) in the HSR group, 46 in the MSR group, and 49 in the LSR group compared with T0 (control) samples. In the HSR group, three miRNAs, miR-485-5p, miR-1193-5p, and miR-3957-5p were significantly (p < 0.05) upregulated, while seven miRNAs, miR-376b-3p, miR-376c-3p, miR-411b-5p, miR-376a-3p, miR-376b-3p, miR-376c-3p, and miR-381-3p, were downregulated (p < 0.05) as compared to the LSR and MSR groups. Functional analysis of DE miRNAs revealed their roles in Ras and MAPK signaling, cytokine signaling, the adaptive immune system, and transcription pathways in the HSR phenotype, implicating a hyper-induced acute-phase response. In contrast, in the LSR group, enriched pathways included glucagon signaling metabolic regulation, the transportation of amino acids and ions, and the integration of energy metabolism. Taken together, these results indicate variation in the acute-phase response to an immune stress challenge, and these miRNAs are implicated in regulating responses within cortisol-based phenotypes.

11.
Biology (Basel) ; 11(12)2022 Nov 29.
Article En | MEDLINE | ID: mdl-36552250

The molecular mechanisms underlying heat stress tolerance in animals to high temperatures remain unclear. This study identified the differentially expressed mRNA isoforms which narrowed down the most reliable DEG markers and molecular pathways that underlie the mechanisms of thermoregulation. This experiment was performed on Sprague Dawley rats housed at 22 °C (control group; CT), and three acute heat-stressed groups housed at 42 °C for 30 min (H30), 60 min (H60), and 120 min (H120). Earlier, we demonstrated that acute heat stress increased the rectal temperature of rats, caused abnormal changes in the blood biochemical parameters, as well as induced dramatic changes in the expression levels of genes through epigenetics and post-transcriptional regulation. Transcriptomic analysis using RNA-Sequencing (RNA-Seq) data obtained previously from blood (CT and H120), liver (CT, H30, H60, and H120), and adrenal glands (CT, H30, H60, and H120) was performed. The differentially expressed mRNA isoforms (DEIs) were identified and annotated by the CLC Genomics Workbench. Biological process and metabolic pathway analyses were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. A total of 225, 5764, and 4988 DEIs in the blood, liver, and adrenal glands were observed. Furthermore, the number of novel differentially expressed transcript lengths with annotated genes and novel differentially expressed transcript with non-annotated genes were 136 and 8 in blood, 3549 and 120 in the liver, as well as 3078 and 220 in adrenal glands, respectively. About 35 genes were involved in the heat stress response, out of which, Dnaja1, LOC680121, Chordc1, AABR07011951.1, Hsp90aa1, Hspa1b, Cdkn1a, Hmox1, Bag3, and Dnaja4 were commonly identified in the liver and adrenal glands, suggesting that these genes may regulate heat stress response through interactions between the liver and adrenal glands. In conclusion, this study would enhance our understanding of the complex underlying mechanisms of acute heat stress, and the identified mRNA isoforms and genes can be used as potential candidates for thermotolerance selection in mammals.

12.
Animals (Basel) ; 12(24)2022 Dec 19.
Article En | MEDLINE | ID: mdl-36552505

Understanding how cows respond to heat stress has helped to provide effective herd management practices to tackle this environmental challenge. The possibility of selecting animals that are genetically more heat tolerant may provide additional means to maintain or even improve the productivity of the Canadian dairy industry, which is facing a shifting environment due to climate changes. The objective of this study was to estimate the genetic parameters for heat tolerance of milk, fat, and protein yields in Canadian Holstein cows. A total of 1.3 million test-day records from 195,448 first-parity cows were available. A repeatability test-day model fitting a reaction norm on the temperature-humidity index (THI) was used to estimate the genetic parameters. The estimated genetic correlations between additive genetic effect for production and for heat tolerance ranged from -0.13 to -0.21, indicating an antagonistic relationship between the level of production and heat tolerance. Heritability increased marginally as THI increased above its threshold for milk yield (0.20 to 0.23) and protein yield (0.14 to 0.16) and remained constant for fat yield (0.17). A Spearman rank correlation between the estimated breeding values under thermal comfort and under heat stress showed a potential genotype by environmental interaction. The existence of a genetic variability for heat tolerance allows for the selection of more heat tolerant cows.

13.
Sci Rep ; 12(1): 22314, 2022 12 24.
Article En | MEDLINE | ID: mdl-36566278

In the dairy industry, mate allocation is dependent on the producer's breeding goals and the parents' breeding values. The probability of pregnancy differs among sire-dam combinations, and the compatibility of a pair may vary due to the combination of gametic haplotypes. Under the hypothesis that incomplete incompatibility would reduce the odds of fertilization, and complete incompatibility would lead to a non-fertilizing or lethal combination, deviation from Mendelian inheritance expectations would be observed for incompatible pairs. By adding an interaction to a transmission ratio distortion (TRD) model, which detects departure from the Mendelian expectations, genomic regions linked to gametic incompatibility can be identified. This study aimed to determine the genetic background of gametic incompatibility in Holstein cattle. A total of 283,817 genotyped Holstein trios were used in a TRD analysis, resulting in 422 significant regions, which contained 2075 positional genes further investigated for network, overrepresentation, and guilt-by-association analyses. The identified biological pathways were associated with immunology and cellular communication and a total of 16 functional candidate genes were identified. Further investigation of gametic incompatibility will provide opportunities to improve mate allocation for the dairy cattle industry.


Genome , Germ Cells , Pregnancy , Female , Animals , Cattle , Genotype , Haplotypes , Fertilization/genetics
14.
Genes (Basel) ; 13(12)2022 12 09.
Article En | MEDLINE | ID: mdl-36553588

Transmission ratio distortion (TRD), or significant deviations from Mendelian inheritance, is a well-studied phenomenon on autosomal chromosomes, but has not yet received attention on sex chromosomes. TRD was analyzed on 3832 heterosomal single nucleotide polymorphisms (SNPs) and 400 pseudoautosomal SNPs spanning the length of the X-chromosome using 436,651 genotyped Holstein cattle. On the pseudoautosomal region, an opposite sire-TRD pattern between male and female offspring was identified for 149 SNPs. This finding revealed unique SNPs linked to a specific-sex (Y- or X-) chromosome and describes the accumulation of recombination events across the pseudoautosomal region. On the heterosomal region, 13 SNPs and 69 haplotype windows were identified with dam-TRD. Functional analyses for TRD regions highlighted relevant biological functions responsible to regulate spermatogenesis, development of Sertoli cells, homeostasis of endometrium tissue and embryonic development. This study uncovered the prevalence of different TRD patterns across both heterosomal and pseudoautosomal regions of the X-chromosome and revealed functional candidate genes for bovine reproduction.


Sex Chromosomes , X Chromosome , Animals , Male , Cattle/genetics , Female , X Chromosome/genetics , Genotype , Fertility/genetics , Recombination, Genetic
15.
BMC Genomics ; 23(1): 684, 2022 Oct 05.
Article En | MEDLINE | ID: mdl-36195838

Although the genetic correlations between complex traits have been estimated for more than a century, only recently we have started to map and understand the precise localization of the genomic region(s) that underpin these correlations. Reproductive traits are often genetically correlated. Yet, we don't fully understand the complexities, synergism, or trade-offs between male and female fertility. In this study, we used reproductive traits in two cattle populations (Brahman; BB, Tropical Composite; TC) to develop a novel framework termed correlation scan (CS). This framework was used to identify local regions associated with the genetic correlations between male and female fertility traits. Animals were genotyped with bovine high-density single nucleotide polymorphisms (SNPs) chip assay. The data used consisted of ~1000 individual records measured through frequent ovarian scanning for age at first corpus luteum (AGECL) and a laboratory assay for serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, IGF1c). The methodology developed herein used correlations of 500-SNP effects in a 100-SNPs sliding window in each chromosome to identify local genomic regions that either drive or antagonize the genetic correlations between traits. We used Fisher's Z-statistics through a permutation method to confirm which regions of the genome harboured significant correlations. About 30% of the total genomic regions were identified as driving and antagonizing genetic correlations between male and female fertility traits in the two populations. These regions confirmed the polygenic nature of the traits being studied and pointed to genes of interest. For BB, the most important chromosome in terms of local regions is often located on bovine chromosome (BTA) 14. However, the important regions are spread across few different BTA's in TC. Quantitative trait loci (QTLs) and functional enrichment analysis revealed many significant windows co-localized with known QTLs related to milk production and fertility traits, especially puberty. In general, the enriched reproductive QTLs driving the genetic correlations between male and female fertility are the same for both cattle populations, while the antagonizing regions were population specific. Moreover, most of the antagonizing regions were mapped to chromosome X. These results suggest regions of chromosome X for further investigation into the trade-offs between male and female fertility. We compared the CS with two other recently proposed methods that map local genomic correlations. Some genomic regions were significant across methods. Yet, many significant regions identified with the CS were overlooked by other methods.


Insulins , Sexual Maturation , Animals , Cattle/genetics , Female , Fertility/genetics , Genome-Wide Association Study/veterinary , Genomics , Growth Hormone/genetics , Insulins/genetics , Male , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Sexual Maturation/genetics
16.
Funct Integr Genomics ; 22(6): 1361-1376, 2022 Dec.
Article En | MEDLINE | ID: mdl-36001276

The high genetic heterogeneity and environmental effects of subfertility in livestock species make the elucidation of the genetic mechanisms associated with reproductive efficiency a difficult task. Network and co-expression network meta-analyses were applied alongside genetic variant calling and long non-coding RNA (lncRNA) characterization to identify functionally relevant target genes and regulatory subnetworks associated with fertility in dairy cattle. In total, 505 lncRNAs (441 previously annotated in the bovine reference genome ARS-UCD 1.2 and 64 novel lncRNAs) were identified. Seven differentially expressed genes between high-fertile (HF) and sub-fertile (SF) Holstein cows were identified in the network meta-analysis (CA5A, ENSBTAG00000051149, ENSBTAG00000003272, DEFB7, DIO2, TRPV3, and COL4A4). Additionally, seven functional candidate differentially co-expressed (DcoExp) modules with a differential regulatory pattern (|z-score|>2) were identified between HF and SF cows. The functional candidate genes and DcoExp modules identified were associated with fertility relevant processes such as the regulation of embryonic implantation and proliferation, interaction and molecule transfer between the fetus and the cow, and the immune system. These results help to better understand the genetic mechanisms associated with reproductive efficiency in dairy cattle through the identification of potential biomarkers and genetic variants associated with differentially expressed regulatory gene and lncRNAs regulatory element networks.


RNA, Long Noncoding , Female , Cattle/genetics , Animals , RNA, Long Noncoding/genetics , Gene Expression Regulation , Gene Regulatory Networks , Fertility/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling
17.
Evol Appl ; 15(4): 706-718, 2022 Apr.
Article En | MEDLINE | ID: mdl-35505883

The aim of this study was to identify novel lncRNA differentially expressed (DE) between divergent animals for beef tenderness and marbling traits in Nellore cattle. Longissimus thoracis muscle samples from the 20 most extreme bulls (of 80 bulls set) for tenderness, tender (n = 10) and tough (n = 10) groups, and marbling trait, high (n = 10) and low (n = 10) groups were used to perform transcriptomic analysis using RNA-Sequencing. For tenderness, 29 lncRNA were DE (p-value ≤ 0.01) in tough beef animals in relation to tender beef animals. We observed that genic lncRNAs, for example, lncRNA_595.1, were overlapping exonic part of the PICK gene, while lncRNA_3097.2 and lncRNA_3129.5 overlapped intronic part of the genes GADL1 and PSMD6. The lncRNA associated with PICK1, GADL1, and PMD6 genes were enriched in the pathways associated with the ionotropic glutamate receptor, gamma-aminobutyric acid synthesis, and the ubiquitin-proteasome pathway. For marbling, 50 lncRNA were DE (p-value ≤ 0.01) in high marbling group compared with low marbling animals. The genic lncRNAs, such as lncRNA_3191.1, were overlapped exonic part of the ITGAL gene, and the lncRNA_512.1, lncRNA_3721.1, and lncRNA_41.4 overlapped intronic parts of the KRAS and MASP1 genes. The KRAS and ITGAL genes were enriched in pathways associated with integrin signaling, which is involved in intracellular signals in response to the extracellular matrix, including cell form, mobility, and mediates progression through the cell cycle. In addition, the lincRNAs identified to marbling trait were associated with several genes related to calcium binding, muscle hypertrophy, skeletal muscle, lipase, and oxidative stress response pathways that seem to play a role important in the physiological processes related to meat quality. These findings bring new insights to better understand the biology mechanisms involved in the gene regulation of these traits, which will be valuable for a further investigation of the interactions between lncRNA and mRNAs, and of how these interactions may affect meat quality traits.

18.
Funct Integr Genomics ; 22(4): 451-466, 2022 Aug.
Article En | MEDLINE | ID: mdl-35305194

The aim of this study was to identify mRNA isoforms and small genetic variants that may be affecting marbling and beef color in Nellore cattle. Longissimus thoracis muscle samples from 20 bulls with different phenotypes (out of 80 bulls set) for marbling (moderate (n = 10) and low (n = 10) groups) and beef color (desirable (n = 10) and undesirable (n = 9) group) traits were used to perform transcriptomic analysis using RNA sequencing. Fourteen and 15 mRNA isoforms were detected as differentially expressed (DE) (P-value ≤ 0.001) between divergent groups for marbling and meat color traits, respectively. Some of those DE mRNA isoforms have shown sites of splicing modified by small structural variants as single nucleotide variant (SNV), insertion, and/or deletion. Enrichment analysis identified metabolic pathways, such as O2/CO2 exchange in erythrocytes, tyrosine biosynthesis, and phenylalanine degradation. The results obtained suggest potential key regulatory genes associated with these economically important traits for the beef industry and for the consumer.


Meat , RNA Isoforms , Animals , Cattle/genetics , Genetic Variation , Male , Meat/analysis , Muscle, Skeletal/metabolism , Phenotype , RNA Isoforms/analysis , RNA Isoforms/metabolism , Sequence Analysis, RNA
19.
Meat Sci ; 186: 108733, 2022 Apr.
Article En | MEDLINE | ID: mdl-35007800

The beef tenderization process during the post-mortem period is one of the most important sensorial attributes and it is well-established. The aim of this study was to identify the genetic contribution pattern to meat tenderness at 7-(LMD7), 14-(LMD14), and 21-(LMD21) days post-mortem. The heritabilities for LMD7 (0.194), LMD14 (0.142) and LMD21 (0.048) are well established in the population evaluated here. However, its genetic contribution in terms of genomic candidate regions is still poorly understood. Tenderness was measured in the Longissiums thoracis using Warner-Bratzler shear force in the three post-mortem periods. A total of 4323 crossbred beef cattle were phenotyped and genotyped using the Illumina BovineSNP50K. The percentage of the total genetic variance was estimated using the weighted single-step genomic best linear unbiased prediction method. The main candidate windows for LMD7 were associated with proteolysis of myofibrillar structures and the weakening endomysium and perimysium. Candidate windows for LMD14 and LMD21 were mapped in bovine QTLs for body composition, height and growth. Results presented herein highlight, the largest contribution of proteolysis related processes before 14-days post-mortem and body composition characteristics in later stages for meat tenderness.


Genome-Wide Association Study , Meat , Animals , Cattle/genetics , Genotype , Meat/analysis , Muscle, Skeletal , Phenotype , Quantitative Trait Loci
20.
J Anim Breed Genet ; 139(3): 271-280, 2022 May.
Article En | MEDLINE | ID: mdl-34894369

Regular changes in the environment and biological responses generate seasonal patterns in the reproduction in small ruminants. Breeding seasonality is a significant constraint impacting efficiency of lamb production. However, seasonality-related traits present a special peculiarity from a statistical point of view being circular data (day of year running 1:365). Recently, circular mixed models have been developed on the basis of the von Mises distribution and were applied to analyse lambing day distribution recorded from five major Canadian sheep breeds (Rideau Arcott, Romanov, Dorset, Suffolk and Polypay). In a simulation study, the linear model was not able to capture the variance components simulated under the circular paradigm; however, the von Mises model evidenced its ability to infer the variance components of simulated circular records. Using real data of sheep, mostly negligible variances were observed for additive genetic effect when using a linear model on circular data values. In contrast, when using the von Mises model, genetic variances were different across breeds, and it raises the possibility to delay the peak of reproduction and to change the seasonality of the ewes. However, a large variance was captured by flock-year effects emphasizing the strong influence of management in lambing seasons for Canadian sheep populations. Finally, the results suggest the potential of using the von Mises model to analyse circular data, and further research is needed for better understand the complexity of this trait and the von Mises models.


Red Meat , Reproduction , Animals , Canada , Female , Phenotype , Reproduction/genetics , Seasons , Sheep/genetics
...